Fire plays a pivotal role in driving ecological shifts between Mediterranean‐type vegetation and subtropical ecosystems in South Africa. This study investigates long‐term environmental dynamics and ecological regime changes at the Mediterranean‐type vegetation /subtropical boundary using a 6000‐year palaeoecological sequence from the Baviaanskloof – a region of South Africa characterized by high levels of biodiversity and climate dynamism. Combining fossil pollen and microcharcoal data from a rock hyrax Procavia capensis midden, we analyse vegetation responses to environmental changes. Our findings reveal that Mediterranean‐type vegetation resilience prevailed until ca 2800 cal year BP when a major fire event triggered a transition to a subtropical thicket‐dominated environment. This abrupt ecological turnover underscores the significance of fire as a major driver of vegetation change at the Mediterranean‐type vegetation /subtropical boundary. Our study emphasizes the vulnerability of Mediterranean‐type vegetation ecosystems to global environmental change, suggesting potential implications for similar biome boundaries worldwide. By integrating multi‐proxy palaeoecological evidence, we gain insights into the resilience and vulnerability of these ecosystems, aiding in understanding future responses to climate change scenarios.