This lecture reports on joint work with Robert Jenkins, Jiaqi Liu, and Catherine Sulem. We illustrate the strengths of the inverse scattering method for addressing large-time behavior of completely integrable dispersive PDE's by proving global well-posedness and determining large-time asymptotic behavior for the Derivative Nonlinear Schrödinger equation (DNLS) for soliton-free initial data. Our work uses techniques from the work of Deift and Zhou on the defocussing NLS together with further developments due to Dieng and McLaughlin.