Abstract. This paper is devoted to the analysis of global smooth solutions to the multidimensional isentropic Euler equations with stiff relaxation. We show that the asymptotic behavior of the global smooth solution is governed by the porous media equation as the relaxation time tends to zero. The results are proved by combining some classical energy estimates with the so-called Shizuta-Kawashima condition.
Mathematics Subject Classification (2010). 35L45, 76N10, 76S05.