A coarse-grained model of a two-dimensional colloidal suspension was designed. The model was athermal and, in addition, a lattice approximation was introduced. It consisted of solvent (monomer) molecules, dimer molecules, and immobile impenetrable obstacles that introduced additional heterogeneity into the system. Dynamic properties were determined by a Monte Carlo simulation using the dynamic lattice liquid simulation algorithm. It is shown that there is a range of obstacle concentrations in which different diffusion characteristics were observed for dimers and solvents. In the system studied, it is possible to define the ranges of concentrations of individual components (solvent, dimers, and obstacles), in which the nature of the movement of dimers and solvents is different (normal diffusion vs. subdiffusion). The ratio of diffusion coefficients of solvent molecules and dimers for short times does not depend on the concentration of obstacles, while for long times, the ratio increases but remains independent of the concentration of the dimer.