ADCC (antibody-dependent cell-mediated cytotoxicity) is dependent on the varying capacity of NK cells to kill, the affinities of FCGR3A-encoded CD16A receptors for antibody, and the presence of antigen-specific antibodies. In vivo ADCC depends on the number of CD16A receptor-positive NK cells in blood. We hypothesized that low ADCC cell function or low effector cell numbers could be biomarkers or risk factors for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We measured NK cell ADCC lytic capacity and antibody recognition, CD16Apositive NK cells/ul blood, and FCGR3A homozygosity for the F allele that encodes low affinity CD16A antibody receptors. ME/CFS patients met the Fukuda 1994 diagnostic criteria. In this pilot report, we examined 5 families, each with 2 to 5 ME/CFS patients, and compared 11 patients, 22 family members without ME/CFS, and 16 unrelated healthy controls. ADCC was measured as CX1:1 cytotoxic capacity (the percentage of 51Cr-Daudi tumors with obinutuzumab anti-CD20 antibody that were killed at a 1:1 ratio of CD16Apos NKs to Daudis) and CX-slope. Individual CX1:1 capacities varied from 16.2% to 81.8% and were comparable between patients and unaffected family members, while the ADCC of both family groups was lower than the unrelated healthy controls. The lack of difference between patients and their unaffected family members indicates that low ADCC is unsuitable as a diagnostic biomarker for ME/CFS. Familial CD16Apos NK blood cell counts were lower than unrelated healthy controls. The potential for synergistic effects of combined low CX1:1 and low effector cell counts occurring in the same individual was 24-fold greater for CFS family members than for unrelated controls. FCGR3A of the families was predominantly F/F homozygous, correlating with the observed low EC50 for NK recognition of target cell-bound antibody. In summary, low ADCC is unsuitable as a biomarker, but could be a familial risk factor, for ME/CFS.