We determined whether rehabilitation after cortical injury also drives dynamic dendritic and spine changes in functionally distinct subsets of neurons, resulting in functional recovery. Moreover, given known requirements for cholinergic systems in mediating complex forms of cortical plasticity, including skilled motor learning, we hypothesized that cholinergic systems are essential mediators of neuronal structural and functional plasticity associated with motor rehabilitation. Adult rats learned a skilled forelimb grasping task and then, underwent destructive lesions of the caudal forelimb region of the motor cortex, resulting in nearly complete loss of grasping ability. Subsequent intensive rehabilitation significantly enhanced both dendritic architecture and spine number in the adjoining rostral forelimb area compared with that in the lesioned animals that were not rehabilitated. Cholinergic ablation markedly attenuated rehabilitation-induced recovery in both neuronal structure and motor function. Thus, rehabilitation focused on an affected limb robustly drives structural compensation in perilesion cortex, enabling functional recovery.cell filling | corticospinal neurons | cholinergic | morphology | plasticity S tudies over the past decade have indicated that the adult brain is structurally dynamic (1-3). Indeed, dendritic spines dynamically turn over in the adult brain (3, 4), and learning of novel tasks is associated with further increases in spine turnover (4). Moreover, total and stable increases in spine number together with enhanced dendritic complexity can be detected when analyses are focused specifically on neuronal subpopulations that are functionally related to a newly learned motor skill (5). For example, we recently reported that cortical layer V pyramidal neurons, which project to spinal segment C8 and are specifically engaged when learning a skilled forelimb grasping task, elaborate a 22% increase in apical dendritic spines and exhibit significant increases in dendritic branching and total dendritic length (5); an adjoining control population of cortical layer V pyramidal neurons that project to C4, which are not specifically shaped by the skilled motor task, exhibits no change in spines or dendritic complexity when the same task is learned (5). The detection of stable structural increases in neurons engaged by skilled motor learning in contrast to a lack of change in adjacent neurons that are not engaged by learning advances our understanding of mechanisms underlying experience-dependent cortical plasticity.Damage to the adult CNS also generates adaptive brain plasticity. For example, focal cortical lesions evoke cortical map plasticity (6, 7), extension of new axonal connections (7,8), and neurogenesis (9). A very important and unresolved question in the neural plasticity and injury fields is whether rehabilitation-that is, specific retraining of injured neural circuits-can drive, alter, or enhance neural plasticity subsequent to brain lesions. Whereas extensive literature has shown that rehab...