Final-state-exclusive momentum distributions of fast, forward-traveling residual nuclei, following two-nucleon removal from fast secondary radioactive beams of projectile nuclei, can and have now been measured. Assuming that the most important reaction mechanism is the sudden direct removal of a pair of nucleons from a set of relatively simple, active shell-model orbital configurations, such distributions were predicted to depend strongly on the total angular momentum I carried by the two nucleons-the final-state spin for spin 0 + projectiles. The sensitivity of these now-accessible observables to specific details of the (correlated) two-nucleon wave functions is of importance. We clarify that it is the total orbital angular momentum L of the two nucleons that is the primary factor in determining the shapes and widths of the calculated momentum distributions. It follows that, with accurate measurements, this dependence upon the L makeup of the two-nucleon wave functions could be used to assess the accuracy of (shell-or many-body-) model predictions of these two-nucleon configurations. By using several tailored examples, with specific combinations of active two-nucleon orbitals, we demonstrate that more-subtle structure aspects may be observed, allowing such reactions to probe and/or confirm the details of theoretical model wave functions.