2017
DOI: 10.3390/ijerph14090983
|View full text |Cite
|
Sign up to set email alerts
|

Longitudinal Study-Based Dementia Prediction for Public Health

Abstract: The issue of public health in Korea has attracted significant attention given the aging of the country’s population, which has created many types of social problems. The approach proposed in this article aims to address dementia, one of the most significant symptoms of aging and a public health care issue in Korea. The Korean National Health Insurance Service Senior Cohort Database contains personal medical data of every citizen in Korea. There are many different medical history patterns between individuals wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
19
0
5

Year Published

2018
2018
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(25 citation statements)
references
References 31 publications
1
19
0
5
Order By: Relevance
“…Tekoälyn menetelmiä on hyödynnetty esimerkiksi aivoaneurysmaan [17], osteoporoosiin [18], mielenterveyden häiriöihin [19,20], dementiaan [21], runsaaseen virtsahappopitoisuuteen [22] ja sydänsairauksiin [23][24][25] liittyvien riskitekijöiden tunnistamiseksi. Lisäksi tekoälyn menetelmiä on hyödynnetty yleisemmin sairauksiin liittyvien riskitekijöiden [26] ja terveydentilojen tunnistamiseksi [27,28].…”
Section: Tekoälyn Hyödyntäminen Terveydenhuollossa Terveysriskien Ja unclassified
See 2 more Smart Citations
“…Tekoälyn menetelmiä on hyödynnetty esimerkiksi aivoaneurysmaan [17], osteoporoosiin [18], mielenterveyden häiriöihin [19,20], dementiaan [21], runsaaseen virtsahappopitoisuuteen [22] ja sydänsairauksiin [23][24][25] liittyvien riskitekijöiden tunnistamiseksi. Lisäksi tekoälyn menetelmiä on hyödynnetty yleisemmin sairauksiin liittyvien riskitekijöiden [26] ja terveydentilojen tunnistamiseksi [27,28].…”
Section: Tekoälyn Hyödyntäminen Terveydenhuollossa Terveysriskien Ja unclassified
“…Taulukossa 1 on kuvattu mihin sairauksiin tai terveydentiloihin liittyen terveysriskejä ja riskitekijöitä on tunnistettu tekoälyn avulla. [21]. Tuarob tutkimusryhmineen [20] puolestaan keräsi mielenterveyden riskitekijöiden tunnistamiseksi tietoa kolmeen eri otteeseen kahdeksan kuukauden aikana.…”
Section: Tekoälyn Hyödyntäminen Terveydenhuollossa Terveysriskien Ja unclassified
See 1 more Smart Citation
“…ML applied to electronic health records was demonstrated to predict suicide risk with an accuracy similar to clinician assessment [268,271], as well as predict dementia and its risk factors with high accuracy [272]. Research has also investigated the use of ML with clinical data to improve variable selection in epidemiological data analysis [273], and to better understand the relationship between complex risk factors for mental health conditions such as depression [274].…”
Section: Mental Health Application ML Technique(s) Data Typementioning
confidence: 99%
“…Anxiety SVM [276], Linear discriminant analysis [276], RF [276] Electronic Health Records [276] Cognitive Distortions DT [277], Regression [277], NB [277], NN [277], kNN [277], RELIEF [277] Social Media [277] Dementia SVM [272] Electronic Health Records [272] Depression DT [278], Gradient boosting [279], kNN [278], LIWC [280], LDA [280], Linear discriminant analysis [276], NB [278], NN [274], RF [276], Regression [274], SVM [276,278] Electronic Health Records [276], Social Media [278,280], Survey [274,279] Grief LIWC [266], SVM [266] Social Media [266] Mental Health Service Usage…”
Section: Technique(s) Data Typementioning
confidence: 99%