Model-based software for simulating ultrasonic pulse/echo inspections of metal components AIP Conference Proceedings 1806, 150008 (2017) cchiou@iastate.edu Abstract. At Iowa State University's Center for Nondestructive Evaluation (ISU CNDE), the use of models to simulate ultrasonic inspections has played a key role in R&D efforts for over 30 years. To this end a series of wave propagation models, flaw response models, and microstructural backscatter models have been developed to address inspection problems of interest. One use of the combined models is the estimation of signal-to-noise ratios (S/N) in circumstances where backscatter from the microstructure (grain noise) acts to mask sonic echoes from internal defects. Such S/N models have been used in the past to address questions of inspection optimization and reliability. Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was recently initiated to improve existing research-grade software by adding graphical user interface (GUI) to become user friendly tools for the rapid estimation of S/N for ultrasonic inspections of metals. The software combines: (1) a Python-based GUI for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signal and backscattered grain noise characteristics. The latter makes use of several models including: the Multi-Gaussian Beam Model for computing sonic fields radiated by commercial transducers; the Thompson-Gray Model for the response from an internal defect; the Independent Scatterer Model for backscattered grain noise; and the Stanke-Kino Unified Model for attenuation. The initial emphasis was on reformulating the research-grade code into a suitable modular form, adding the graphical user interface and performing computations rapidly and robustly. Thus the initial inspection problem being addressed is relatively simple. A normal-incidence pulse/echo immersion inspection is simulated for a curved metal component having a non-uniform microstructure, specifically an equiaxed, untextured microstructure in which the average grain size may vary with depth. The defect may be a flat-bottomed-hole reference reflector, a spherical void or a spherical inclusion. In future generations of the software, microstructures and defect types will be generalized and oblique incidence inspections will be treated as well. This paper provides an overview of the modeling approach and presents illustrative results output by the first-generation software.