BackgroundAnaerobic digestion of easily degradable biowaste can lead to the accumulation of volatile fatty acids, which will cause environmental stress to the sensitive methanogens consequently. The metabolic characteristics of methanogens under acetate stress can affect the overall performance of mixed consortia. Nevertheless, there exist huge gaps in understanding the responses of the dominant methanogens to the stress, e.g., Methanosarcinaceae. Such methanogens are resistant to environmental deterioration and able to utilize multiple carbon sources. In this study, transcriptomic and proteomic analyses were conducted to explore the responses of Methanosarcina barkeri strain MS at different acetate concentrations of 10, 25, and 50 mM.ResultsThe trend of OD600 and the regulation of the specific genes in 50 mM acetate, indicated that high concentration of acetate promoted the acclimation of M. barkeri to acetate stress. Acetate stress hindered the regulation of quorum sensing and thereby eliminated the advantages of cell aggregation, which was beneficial to resist stress. Under acetate stress, M. barkeri allocated more resources to enhance the uptake of iron to maintain the integrities of electron-transport chains and other essential biological processes. Comparing with the initial stages of different acetate concentrations, most of the genes participating in acetoclastic methanogenesis did not show significantly different expressions except hdrB1C1, an electron-bifurcating heterodisulfide reductase participating in energy conversion and improving thermodynamic efficiency. Meanwhile, vnfDGHK and nifDHK participating in nitrogen fixation pathway were upregulated.ConclusionIn this work, transcriptomic and proteomic analyses are combined to reveal the responses of M. barkeri to acetate stress in terms of central metabolic pathways, which provides basic clues for exploring the responses of other specific methanogens under high organics load. Moreover, the results can also be used to gain insights into the complex interactions and geochemical cycles among natural or engineered populations. Furthermore, these findings also provide the potential for designing effective and robust anaerobic digesters with high organic loads.