Luminescent, mono-diimine, ruthenium complexes, [(H)Ru(CO)(PPh3)2(dcbpy)][PF6] (1, dcbpy = 4,4′-dicarboxy bipyridyl) and [(H)Ru(CO)(dppene)(5-amino-1,10-phen)][PF6] (2, dppene = bis diphenylphosphino-ethylene, phen = 9,10-phenanthroline), have been conjugated with 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) and with cholesterol in the case of 2. Compound 1 gives the bis-lipid derivative [(H)Ru(CO)(PPh3)2(dcbpy-N-DPPE2)][PF6] (3), while 2 provides the mono-lipid conjugate [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(S)-N-DPPE)][ PF6] (4), and the cholesterol derivative [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(O)OChol)][PF6] (5, Chol = cholesteryl), using standard conjugation techniques. These compounds were characterized by spectroscopic methods, and their photophysical properties were measured in organic solvents. The luminescence of lipid conjugates 3 and is quenched in organic solvents while compound 4 a weak, short-lived, blue-shifted emission in solution. The cholesterol conjugate shows the long-lived, microsecond-timescale emission associated with triplet metal-to-ligand charge-transfer (3MLCT) excited states. Incorporation of conjugate 3 in lipid bilayer vesicles restores the luminescence, but with blue shifts (~80 nm) accompanied by nanosecond-timescale lifetimes. In the vesicles conjugate 4 shows a similar short-lived and blue-shifted emission to that observed in solution but with increased intensity. Conjugation of the complex [(H)Ru(CO)(PhP2C2H4C(O)O-N-succinimidyl)2(bpy)][PF6] (6”) with DPPE gives the phosphine-conjugated complex [(H)Ru(CO)(PhP2C2H4C(O)-N-DPPE)2(bpy)][PF6] (7). Complex 7 also exhibits a short-lived and blue-shifted emission in solution and in vesicles as observed for 3 and 4. We have also conjugated the complex [Ru(bpy)2(5-amino-1,10-phenanthroline)][PF6]2 (8) with both cholesterol (9) and DPPE (10). Neither 9 nor the previously reported 10 exhibited the blue shifts observed for 3 and 4 when incorporated into LUVs. The anisotropies of the emissions of 3, 4 and 7 were also measured in LUVs and of 5 in both glycerol and LUVs. High fundamental anisotropies were observed for 3 and 4 and 7.