We discuss new effects related to relativistic aberration, which is the apparent distortion of objects moving at relativistic speeds relative to an idealized camera. Our analysis assumes that the camera lens is capable of stigmatic imaging of objects at rest with respect to the camera, and that each point on the shutter surface is transparent for one instant, but different points are not necessarily transparent synchronously. We pay special attention to the placement of the shutter. First, we find that a wide aperture requires the shutter to be placed in the detector plane to enable stigmatic images. Second, a Lorentz-transformation window [Proc. SPIE 9193, 91931K (2014)PSISDG0277-786X10.1117/12.2061415] can correct for relativistic distortion. We illustrate our results, which are significant for future spaceships, with raytracing simulations.