LoRa systems are emerging as a promising technology for wireless sensor networks due to their exceptional range and low power consumption. The successful deployment of LoRa networks relies on accurate propagation models to facilitate effective network planning. Therefore, this review explores the landscape of propagation models supporting LoRa networks. Specifically, we examine empirical propagation models commonly employed in communication systems, assessing their applicability across various environments such as outdoor, indoor, and within vegetation. Our investigation underscores the prevalence of logarithmic decay in most empirical models. In addition, we survey the relationship between model parameters and environmental factors, clearing their nuanced interplay. Analyzing published measurement results, we extract the log-distance model parameters to decipher environmental influences comprehensively. Drawing insights from published measurement results for LoRa, we compare them with the model’s outcomes, highlighting successes and limitations. We additionally explore the application of multi-slope models to LoRa measurements to evaluate its effectiveness in enhancing the accuracy of path loss prediction. Finally, we propose new lines for future research in propagation modelling to improve empirical models.