Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents the outcome of a recent study in clocking-related flow features and multistage effects occurring in high-pressure turbine blade geometries. The current investigation deals with an experimentally based systematic analysis of the effects of both stator-stator and rotor-rotor clocking. Due to the low aspect ratio of the turbine geometry, the flow field is strongly three-dimensional and is dominated by secondary flow structures. The investigation aims to identify the flow interactions involved and the associated effects on performance improvement or degradation. Consequently a three-dimensional numerical analysis has been undertaken to provide the numerical background to the test case considered. The experimental studies were performed in a two-stage axial research turbine facility. The turbine provides a realistic multi-stage environment, in which both stator blade rows and the two rotors can be clocked relative to each other. All blade rows have the same blade number count, which tends to amplify clocking effects. Unsteady and steady measurements were obtained in the second stage using fast response aerodynamic probes (FRAP) and miniature pneumatic 5-hole probes. The current comprehensive investigation has shown that multistage and unsteady flow effects of stator and rotor clocking in low aspect ratio turbines are combined in a nonlinear fashion caused by axial and radial redistribution of low energy fluid. The integral result of clocking on stage efficiency is compensated by competing loss generating mechanisms across the span.
This paper presents the outcome of a recent study in clocking-related flow features and multistage effects occurring in high-pressure turbine blade geometries. The current investigation deals with an experimentally based systematic analysis of the effects of both stator-stator and rotor-rotor clocking. Due to the low aspect ratio of the turbine geometry, the flow field is strongly three-dimensional and is dominated by secondary flow structures. The investigation aims to identify the flow interactions involved and the associated effects on performance improvement or degradation. Consequently a three-dimensional numerical analysis has been undertaken to provide the numerical background to the test case considered. The experimental studies were performed in a two-stage axial research turbine facility. The turbine provides a realistic multi-stage environment, in which both stator blade rows and the two rotors can be clocked relative to each other. All blade rows have the same blade number count, which tends to amplify clocking effects. Unsteady and steady measurements were obtained in the second stage using fast response aerodynamic probes (FRAP) and miniature pneumatic 5-hole probes. The current comprehensive investigation has shown that multistage and unsteady flow effects of stator and rotor clocking in low aspect ratio turbines are combined in a nonlinear fashion caused by axial and radial redistribution of low energy fluid. The integral result of clocking on stage efficiency is compensated by competing loss generating mechanisms across the span.
A unique comparative experimental and numerical investigation carried out on two test cases with shroud configurations differing only in the labyrinth seal path, is presented in this paper. The blade geometry and tip clearance is identical in the two test cases. The geometries under investigation are representative of an axial turbine with a full and partial shroud, respectively. Global performance and flow field data were acquired and analyzed. Computational simulations were carried out to complement the investigation and to facilitate the analysis of the steady and unsteady flow measurements. A detailed comparison between the two test cases is presented in terms of flow field analysis and performance evaluation. The analysis focuses on the flow effects reflected on the overall performance in a multi-stage environment. Strong interaction between the cavity flow and the blade tip region of the rotor blades is observed up to the blade mid span. A marked effect of this interaction can be seen in the downstream second stator where different vortex structures are observed. Moreover, in the partial shroud test case, a strong tip leakage vortex is developed from the first rotor and transported through the downstream blade row. A measurable change in the second stage efficiency was observed between the two test cases. In low aspect ratio blades within a multistage environment, small changes in the cavity geometry can have a significant effect on the mainstream flow. The present analysis has shown that an integrated and matched blade-shroud aerodynamic design has to be adopted to reach optimal performances. The additional losses resulting from small variations of the sealing geometry could result in a gain of up to one point in the overall stage efficiency.
This study presents an analytical model that uses directly measurable flow quantities to predict the effects of leakage on shrouded turbine stage performance. The model displays good predictive ability for the mass leakage fraction, for the tip leakage and for the mixing losses. The model resolves the negative incidence angle induced by mixing the leakage flow with the main stream and predicts the increment in the total mixing loss coefficient at increasing injection angles. The effects of the labyrinth seal geometry, such as the tip gap width and the number of seals, on the associated leakage losses as well as on the turbine stage performance are adequately represented. Overall, the present model exhibits a good qualitative and quantitative agreement with comparative benchmark data. It is concluded that increasing the labyrinth through-flow resistance by increasing the number of fins leads to a decrement in the leakage flow and its adverse effects but the effectiveness of this reduction decreases as the number of fins increases by more than three. The mass leakage fraction, tip leakage loss coefficient and total mixing loss coefficient increase linearly as the sealing gap ratio increases. A conventional injection angle of 90° increases the total mixing loss by about 28% compared to injecting parallel to the main passage flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.