Although estrogen is implicated in the regulation of mammalian intestinal function, the presence and the distribution of estrogen receptor (ER)-positive cells in the intestine are still controversial. The present study was designed to localize ERalpha- and ERbeta-expressing cells in female and male mouse intestines immunohistochemically under various estrogen conditions, especially in female mice, ovariectomized as well at various phases of the estrous cycle. Western blot analysis detected both ERalpha (66-kDa band) and ERbeta (56-kDa band). Immunohistochemical staining of paraffin-embedded sections after antigen-retrieval treatment with autoclaving revealed staining for ERalpha in submucosal interstitial cells, and double staining identified these cells as a subtype of intestinal macrophages. The number of these cells varied according to the estrous cycle phase. Administration of 17beta-estradiol to ovariectomized mice resulted in a significant increase in the number of ERalpha-positive macrophages. On the other hand, the nuclei of nerve cells in Auerbach and Meissner plexuses were positive for both ERalpha and ERbeta, but the number of positive nerve cells was not affected by estrogen. Our results indicate that estrogen and estrogenic compounds may exert their actions on the intestine in two ways; one is through interstitial macrophages and the other is through intestinal neurons.