Purpose: p16(INK4a) has been appreciated as a key regulator of cell cycle progression and senescence. Cultured human mammary epithelial cells that lack p16(INK4a) activity have been shown to exhibit premalignant phenotypes, such as telomeric dysfunction, centrosomal dysfunction, a sustained stress response, and, most recently, a dysregulation of chromatin remodeling and DNA methylation.These data suggest that cells that lack p16(INK4a) activity would be at high risk for breast cancer development and may exhibit an increased frequency of DNA methylation events in early cancer. Experimental Design: To test this hypothesis, the frequencies of INK4a/ARF promoter hypermethylation, as well as four additional selected loci, were tested in the initial random periareolar fine needle aspiration samples from 86 asymptomatic women at high risk for development of breast cancer, stratified using the Masood cytology index. Results: INK4a/ARF promoter hypermethylation was observed throughout all early stages of intraepithelial neoplasia and, importantly, in morphologically normal-appearing mammary epithelial cells; 29 of 86 subjects showed INK4a/ARF promoter hypermethylation in at least one breast. Importantly, INK4a/ARF promoter hypermethylation was not associated with atypia, and the frequency of hypermethylation did not increase with increasing Masood cytology score. The frequency of INK4a/ARF promoter hypermethylation was associated with the combined frequency of promoter hypermethylation of retinoic acid receptor-h2, estrogen receptor-a, and breast cancer-associated 1genes (P = 0.001). Conclusions: Because INK4a/ARF promoter hypermethylation does not increase with age but increases with the frequency of other methylation events, we predict that INK4a/ARF promoter hypermethylation may serve as a marker of global methylation dysregulation. p16(INK4a) acts to block cell cycle progression by binding to cyclin-dependent kinase-4 (CDK4) and CDK6 and inhibiting the catalytic activity of the CDK4-CDK6/cyclin D complex required for retinoblastoma protein phosphorylation (1, 2). p16(INK4a) blocks progression beyond the G 1 -S restriction point by disrupting the formation of an E2F-DB active transcriptional complexes, thereby preventing the transcription of cell cycle progression genes (3). Loss or inactivation of p16(INK4a) function has been observed in numerous tumor types (4 -6), and p16(INK4a) has been implicated to play an important role in the control of replicative senescence in fibroblasts and human mammary epithelial cells (7,8).Loss of p16(INK4a) function has been identified to be the result of both genetic and epigenetic events. Multiple mechanisms exist, including point mutation, loss of heterozygosity (LOH), small homozygous deletion (<200 kb), and promoter hypermethylation. LOH at the INK4a/ARF locus (9p21) has been reported in a number of neoplasias, including breast