Background: Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, it’s not clear whether hip disorder with pain induces somatotopic map plasticity in the cortex. We aimed to evaluate the surface-based map plasticity of the somatotopic cortex in hip disorder at local and extensive levels by resting-state functional magnetic resonance imaging (rs-fMRI).Methods: 20 patients with osteonecrosis of the femoral head (ONFH) (12 males and 8 females, age= 56.80±13.60 years) with Visual Analogue Scale (VAS) scores ≥ 4 and 20 healthy controls (9 males and 11 females, age= 54.56±10.23 years) were enrolled in this study. rs-fMRI data and T1 imaging data were collected, and surface-based regional homogeneity (ReHo), seed-based functional connectivity (FC), cortical thickness and the volume of subcortical gray nuclei were calculated.Results: Compared with the healthy controls, the ONFH patients showed significantly increased surface-based ReHo in areas distributed mainly in the left dorsolateral prefrontal cortex and frontal eye field, the right frontal eye field and the premotor cortex and decreased surface-based ReHo in the right primary motor cortex and primary sensory cortex. When the area with decreased surface-based ReHo in the frontal eye field and right premotor cortex was used as the regions of interest (ROI), compared with the controls, the ONFH patients displayed increased FC in the right middle frontal cortex and right inferior parietal cortex and decreased FC in the right precentral cortex and right middle occipital cortex. ONFH patients also showed significantly decreased cortical thickness in the para-insular area, supplementary motor cortex area and frontal eye field and decreased volume of subcortical gray matter nuclei in the right nucleus accumbens (479.32±88.26 vs 539.44±68.36, P=0.026). Conclusions: Hip disorder patients showed cortical plasticity changes, mainly in sensorimotor and pain-related regions.