HIV-1 infection in chimpanzees, the closest human relative, rarely leads to disease progression. NK cells contribute to the shaping of adaptive immune responses in humans and show perturbed phenotype and function during HIV-1 infection. In this study, we provide full phenotypic, molecular, and functional characterization for triggering molecules (NKp46, NKp30 NKp80, and NKG2D) on Pan troglodytes NK cells. We demonstrate that, in this AIDS-resistant species, relevant differences to human NK cells involve NKp80 and particularly NKp30, which is primarily involved in NK-dendritic cell interactions. Resting peripheral chimpanzee NK cells have low or absent NKp30 molecule expression due to posttranscriptional regulation and increase its levels upon in vitro activation. Following long-standing HIV-1 infection, peripheral NK cells in chimpanzees have conserved triggering receptor expression and display moderate phenotypic and functional decreases only once activated and cultured in vitro. These data suggest that one of the keys to successful lentivirus control may reside in part in a different regulation of NK cell-triggering receptor expression.