We discuss quantum position verification (QPV) protocols in which the verifiers create and send single-qubit states to the prover. QPV protocols using single-qubit states are known to be insecure against adversaries that share a small number of entangled qubits. We introduce QPV protocols that are practically secure: they only require single-qubit states from each of the verifiers, yet their security is broken if the adversaries sharing an impractically large number of entangled qubits employ teleportation-based attacks. These protocols are a modification of known QPV protocols in which we include a classical random oracle without altering the amount of quantum resources needed by the verifiers. We present a cheating strategy that requires a number of entangled qubits shared among the adversaries that grows exponentially with the size of the classical input of the random oracle.