This paper evaluates the performance of the high-voltage wide-band gap SiC power transistors equipped within 3-phase bridgeless 3 kW PFC circuit. The main aim of the study is the experimental evaluation of the dynamic properties and driving power requirements of the transistors, for which the parameters are similar. These are competing products from different manufacturers, while the selection criterion was the same type of package technology (7 pin D2PAK). Second, the effect of the transistor type was analysed in terms of the performance efficiency of the PFC circuit. Within the analysis, the driver circuit was constructed first, and adapted to high voltage transistor driving. During individual measurements, the driver remained the same, while gate-driver losses were analysed for individual transistors. The obtained results reveal differences related to requirements on driving power, as well as to the dynamics of transistors themselves. At the end of the paper, the evaluation of efficiency for different operating conditions of a constructed PFC converter is realized. The obtained results provide a more detailed overview of the dynamic properties of transistors and their impact on the resulting efficiency of the main circuit also in terms of driving requirements.