Gastric cancer (GC) is among the most common malignancy in the world with poor prognosis and limited treatment options. It has been established that gastric carcinogenesis is caused by a complex interaction between host and environmental factors. Copy number variation (CNV) refers to a form of genomic structural variation that results in abnormal gene copy numbers, including gene amplification, gain, loss and deletion. DNA CNV is an important influential factor for the expression of both protein-coding and non-coding genes, affecting the activity of various signaling pathways. CNV arises as a result of preferential selection that favors cancer development, and thus, targeting the amplified 'driver genes' in GC may provide novel opportunities for personalized therapy. The detection of CNVs in chromosomal or mitochondrial DNA from tissue or blood samples may assist the diagnosis, prognosis and targeted therapy of GC. In this review, we discuss the recent CNV discoveries that shed light on the molecular pathogenesis of GC, with a specific emphasis on CNVs that display diagnostic, prognostic or therapeutic significances in GC.