Data compression techniques have extensive applications in power-constrained digital communication systems, such as in the rapidly-developing domain of wireless sensor network applications. This paper explores energy consumption tradeoffs associated with data compression, particularly in the context of lossless compression for acoustic signals. Such signal processing is relevant in a variety of sensor network applications, including surveillance and monitoring. Applying data compression in a sensor node generally reduces the energy consumption of the transceiver at the expense of additional energy expended in the embedded processor due to the computational cost of compression. This paper introduces a methodology for comparing data compression algorithms in sensor networks based on the figure of merit D/E, where D is the amount of data (before compression) that can be transmitted under a given energy budget E for computation and communication. We develop experiments to evaluate, using this figure of merit, different variants of linear predictive coding. We also demonstrate how different models of computation applied to the embedded software design lead to different degrees of processing efficiency, and thereby have significant effect on the targeted figure of merit.Index Terms-DSP software, lossless data compression, linear predictive coding, low power design, wireless sensor networks.