Vitamin D deficiency and childhood obesity have been classified as epidemics throughout the world, and both share some common risk factors including poor diet and inactivity. Observational and clinical studies show that vitamin D status and fat mass are inversely correlated. It is not clear whether vitamin D deficiency contributes to, or is a consequence of obesity, or whether there are regulatory interactions between excess adiposity and vitamin D activity. The effects of this deficiency in childhood obesity appear to have negative influences on overall health, including insulin resistance, inflammation, and impeded bone mineralization, as well as increased future risk of type 2 diabetes, cardiovascular disease, and osteoporosis. The rather ubiquitous distribution of the vitamin D receptor and the 25-hydroxyvitamin D 1α-hydroxylase throughout the body, including evidence for a role of vitamin D in adipogenesis and adipocyte metabolism, may in part explain these widespread effects. Most of the findings to date suggest that the vitamin D needs of obese children are greater than the nonobese. Although ultraviolet B-induced skin synthesis is a main source of vitamin D, its use is neither feasible nor prudent due to limited sun availability for many and concerns for skin cancer. Likewise, obtaining adequate vitamin D from natural food sources alone is generally not achievable, and even in countries that allow fortification, vitamin D intakes are low. Therefore, in obese children, vitamin D supplementation is warranted. Weight loss interventions using energy restriction and physical activity may also improve the poor vitamin D status associated with obesity. More research is needed to define optimal vitamin D status in this vulnerable population, including investigations to determine the efficacy of vitamin D supplementation in attenuating the conditions associated with childhood obesity, and to further elucidate the mechanisms by which vitamin D exerts its effects on health.