Camera systems support the rapid assessment of ship traffic at ports, allowing for a better perspective of the maritime situation. However, optimal ship monitoring requires a level of automation that allows personnel to keep track of relevant variables in the maritime situation in an understandable and visualisable format. It therefore becomes important to have real-time recognition of ships present at the infrastructure, with their class and geographic position presented to the maritime situational awareness operator. This work presents a novel dataset, ShipSG, for the segmentation and georeferencing of ships in maritime monitoring scenes with a static oblique view. Moreover, an exploration of four instance segmentation methods, with a focus on robust (Mask-RCNN, DetectoRS) and real-time performances (YOLACT, Centermask-Lite) and their generalisation to other existing maritime datasets, is shown. Lastly, a method for georeferencing ship masks is proposed. This includes an automatic calculation of the pixel of the segmented ship to be georeferenced and the use of a homography to transform this pixel to geographic coordinates. DetectoRS provided the highest ship segmentation mAP of 0.747. The fastest segmentation method was Centermask-Lite, with 40.96 FPS. The accuracy of our georeferencing method was (22±10) m for ships detected within a 400 m range, and (53±24) m for ships over 400 m away from the camera.