Low power and real time very large scale integration (VLSI) architectures of motion estimation (ME) algorithms for mobile devices and applications are presented. The power reduction is achieved by devising a novel correction recovery mechanism based on algorithms which allow the use of reduced bit sum of absolute difference (RBSAD) metric for calculating matching error and conversion to full resolution sum of absolute difference (SAD) metric whenever necessary. Parallel and pipelined architectures for high throughput of full search ME corresponding to both the full resolution SAD and the generalized RBSAD algorithm are synthesized using Xilinx Synthesis Tools (XST), where the ME designs based on reduced bit (RB) algorithms demonstrate the reduction in power consumption up to 45% and/or the reduction in area up to 38%.Keywords: motion estimation (ME), very large scale integration (VLSI), reduced bit sum of absolute difference (RBSAD).