Partial transmit sequence (PTS) technique is a fairly suitable scheme to mitigate the high peak-to-average power ratio (PAPR) problem inherent in 5G multicarrier system-especially considering high-order QAM modulation design. However, the high computational complexity level and the speed of the convergence for optimizing the phases of the transmitting signal restricts this technique in practical applications. In this paper, a low-complexity frequency domain evaluated PTS (F-PTS) based on spacing multi-objective (SMO) processing algorithm is proposed to reduce the PAPR values. The PAPR performance are accurately predicted in terms of modifying relative dispersion in the frequency domain. As a result, the complexity of searching the optimal phase factors and IFFT computing is simplified. Moreover, frequency domain and time domain evaluating PTS (FTD-PTS) is employed to search the optimal solution within reasonable complexity. Simulation results verify that the F-PTS scheme can obtain well secondary peaks with lower computational complexity, and the FTD-PTS scheme effectively reduces PAPR with a faster convergence speed.