Estimating spectral data such as camera sensor responses or illuminant spectral power distribution from raw RGB camera outputs is crucial in many computer vision applications. Usually, 2D color charts with various patches of known spectral reflectance are used as reference for such purpose. Deducing n-D spectral data (n»3) from 3D RGB inputs is an ill-posed problem that requires a high number of inputs. Unfortunately, most of the natural color surfaces have spectral reflectances that are well described by low-dimensional linear models, i.e. each spectral reflectance can be approximated by a weighted sum of the others. It has been shown that adding patches to color charts does not help in practice, because the information they add is redundant with the information provided by the first set of patches. In this paper, we propose to use spectral data of higher dimensionality by using 3D color charts that create inter-reflections between the surfaces. These inter-reflections produce multiplications between natural spectral curves and so provide non-linear spectral curves. We show that such data provide enough information for accurate spectral data estimation.