This study aimed to evaluate the efficacy of polyvinyl alcohol (PVA) gel beads as an immobilized biofilm carrier to enhance the reduction rate of Ammonia-Nitrogen (NH3-N) and Chemical Oxygen Demand (COD) in domestic wastewater. Laboratory scale reactors were developed to assess the reduction levels of ammonia-nitrogen and COD with and without PVA gel beads using optimal and non-optimal treatment mode settings based on operation procedures from the sewage treatment plant in Taman Kajang Utama, Selangor. The treatment method used is an activated sludge sequencing batch reactor with a treatment cycle duration of 288 minutes. The findings showed the ammonia-nitrogen reduction by non-optimal treatment mode is more effective, with a reduced rate of 62.96% to 65.71% compared to optimal treatment mode with a reduced rate of 30.94% and treatment without PVA gel beads (optimal and non-optimal) with a reduced rate of 32.41% to 47.85%. The ammonia-nitrogen reduction rate using PVA gel beads for non-optimal treatment mode was significantly increased from 17.86% to 18.82% and complied with ammonia-nitrogen reduction parameter 10mg/L, Standard A of Environmental Quality (Sewage) Regulations 2009 (EQSR 2009). The rate of COD reduction using the non-optimal treatment mode was also more stable, with a reduced rate of 70.68%. It was also found that the COD reduction rate using PVA gel beads for the non-optimal mode was better than the optimal mode, which was 70.68% compared to 42.0%, and both treatment modes complied with COD reduction parameters 120mg/L, Standard A of EQSR 2009.