Summary
The aim of this study was to establish a robust model of diabetic myocardial hypertrophy in Mus musculus castaneus mice. Mice were fed a high‐fat diet for four weeks and then given streptozotocin (STZ, 40 mg kg−1 d−1 for 5 days, intraperitoneally) and fasting blood glucose (FBG) levels were tested after seven days. Mice with FBG levels above 11.1 mmol/L were considered diabetic. Diabetic mice continued to have access to the high‐fat diet until cardiac hypertrophy developed. FBG and body weight (BW) were measured weekly. Myocardial hypertrophy was confirmed by left ventricle (LV) hypertrophy index (LVHI), LV/BW, LV histopathological observation and atrial natriuretic factor (ANF) mRNA expression. Serum insulin and plasma haemoglobin A1c (HbA1c) levels, total cholesterol (TCH) and triglyceride (TG) were measured, and then an insulin resistance index (HOMA.IR) was calculated. The level of FBG in the model group remained above 11.1 mmol/L, and the BW showed significant weight loss, compared with the control group (P < 0.01). The high levels of HbA1c, HOME.IR, TCH and TG, and the low level of insulin suggested that glucose metabolism was not balanced with insulin resistance; meanwhile, higher TCH and TG showed that dyslipidaemia had also developed. After the diabetic mice were kept on the high‐energy diet for another four weeks, histopathological observation showed myocardial injuries, much more surface area and collagen fibres, higher LVHI and LV/BW, and elevated expression of ANF mRNA (P < 0.01), suggesting that myocardial hypertrophy had appeared in Mus musculus castaneus mice under the current experimental conditions. Thus a robust model of diabetic myocardial hypertrophy was established four weeks after confirmation of diabetes, which was induced by feeding a high‐fat diet for four weeks combined with a repeated low‐dose STZ exposure, in Mus musculus castaneus mice.