In the presence of an external magnetic field, the optical response of two-dimensional materials, whose charge carriers behave as massless Dirac fermions with arbitrary anisotropic Fermi velocity, is investigated. Using Kubo formalism, we obtain the magneto-optical conductivity tensor for these materials, which allows to address the magneto-optical response of anisotropic Dirac fermions from the well known magneto-optical conductivity of isotropic Dirac fermions. As an application, we analyse the combined effects of strain-induced anisotropy and magnetic field on the transmittance, as well as on the Faraday rotation, of linearly polarized light after passing strained graphene. The reported analytical expressions can be a useful tool to predict the absorption and the Faraday angle of strained graphene under magnetic field. Finally, our study is extended to anisotropic two-dimensional materials with Dirac fermions of arbitrary pseudospin.