Acoustic propagation in the ocean inevitably encounters inhomogeneities of various types, which give rise to scattering. Acoustic scattering from rough water /bottom interfaces comprised of exposed rocks and sea mountains gives way to volumetric scattering in areas with fiat interfaces and thick sediment cover. The data analysis of the ARSRP backscattering experiment revealed that random inhomogeneities in two irregular layers beneath the seafloor were the primary contributors to oblique backscattering in a sediment pond on the western flank of the Mid-Atlantic Ridge. In this thesis, an attempt has been made to model monostatic backscattering from 3-D volume inhomogeneities in the sediment and to compare the results with the ARSRP backscattering data.A scattering process cannot be modeled correctly without a proper account of the incident field . Several approximate propagation models have been evaluated against the exact solution, while the appropriateness of using the equivalent surface scattering strength in volume scattering characterizations is studied. This study concludes that precautions need to be taken in modeling both the propagation effects and the scattering mechanisms associated with the bottom volume scattering process.A volume scattering model based on perturbation theory and the Born approximation is developed incorporating contributions from both sound speed and density fluctuations. With the propagation part handled accurately by OASES and random fluctuations generated effectively by a new scheme modified from the spectral method, the model is capable of simulating the monostatic backscattered field and time series due to 3-D volumetric sediment inhomogeneities. Both the characteristic length scale and power spectrum descriptions of the random inhomogeneities are shown to have great impact on the backscattered field by parameter studies in a free-space scenario. The important roles played by horizontal anisotropy and the vertical correlation of the random field have been demonstrated. Density fluctuations are further confirmed to be the dominant force in backscattering. The model matches the ARSRP backscattering data very well , with the fluctuations of sound speed and density in the two irregular layers described by a power law type of power spectrum. To my fellow-students in 5-007 and 5-435, thank you for t he wonderful atmosphere that you have created and t he team-work spirit t hat I have enjoyed. Believe me, you are t he best.Life would not have been so fun without all my friends. Qing, Henry, and Chenyang, how about playing some Tetris the next t ime we get together? And t hank you for introducing me t o the "real world" . Wenjie and Co. , guess no card game is scheduled for now. Thank you, Elaine, for many "Sloanish" advice, Lia ng-wu, for the ride to chase t he sunset, Richard , for the parties, and Feng, for making me a part-time Ashdowner. Helen, Lan and Xiaoou, I will surely not forget t he summer at Cape Cod.My most grateful thanks goes to my parents and my sister. You are ...