Conventional multiple-input and multiple-output (MIMO) radar is a flexible technique which enjoys the advantages of phased-array radar without sacrificing its main advantages. However, due to its range-independent directivity, MIMO radar cannot mitigate nondesirable range-dependent interferences. In this paper, we propose a range-dependent interference suppression approach via frequency diverse array (FDA) MIMO radar, which offers a beamforming-based solution to suppress range-dependent interferences and thus yields much better DOA estimation performance than conventional MIMO radar. More importantly, the interferences located at the same angle but different ranges can be effectively suppressed by the range-dependent beamforming, which cannot be achieved by conventional MIMO radar. The beamforming performance as compared to conventional MIMO radar is examined by analyzing the signal-to-interference-plus-noise ratio (SINR). The Cramér-Rao lower bound (CRLB) is also derived. Numerical results show that the proposed method can efficiently suppress range-dependent interferences and identify range-dependent targets. It is particularly useful in suppressing the undesired strong interferences with equal angle of the desired targets.