“…Choose p = 11 such that gcd(p, q(q m − 1)) = 1. We can obtain an (11,11,11, W 0 , W0 11 ) one-coincidence FHS set E as shown in Example 2. Then based on Construction 1, we can get an LHZ FHS set G as follows: g 0 = {(α 0 , 0), (α 18 , 4), (α 3 , 1), (α 3 , 2), (α 12 , 7), (α 24 , 5), (α 6 , 7), (α 3 , 2), · · · }, g 1 = {(α 0 , 1), (α 18 , 5), (α 3 , 2), (α 3 , 3), (α 12 , 8), (α 24 , 6), (α 6 , 8), (α 3 , 3), · · · }, · · · g 98 = {(α 7 , 10), (α 22 , 3), (α 20 , 0), (α 20 , 1), (α 6 , 6), (α 10 , 4), (α 14 , 6), · · · }.…”