Transcranial focused ultrasound (tFUS) is a promising neuromodulation technique able to target shallow and deep brain structures with high precision. Previous studies have demonstrated that tFUS stimulation responses are both cell-type specific and controllable through altering stimulation parameters. Specifically, tFUS can elicit time-locked neural activity in regular spiking units (RSUs) that is sensitive to increases in pulse repetition frequency (PRF), while time-locked responses are not seen in fast spiking units (FSUs). These findings suggest a unique capability of tFUS to alter circuit network dynamics with cell-type specificity; however, these results could be biased by the use of anesthesia, which significantly modulates neural activities. In this study, we develop an awake head-fixed rat model specifically designed for tFUS study, and address a key question if tFUS still has cell-type specificity under awake conditions. Using this novel animal model, we examined a series of PRFs and burst duty cycles (DCs) to determine their effects on neuronal subpopulations without anesthesia. We conclude that cell-type specific time-locked and delayed responses to tFUS as well as PRF and DC sensitivity are present in the awake animal model and that despite some differences in response, isoflurane anesthesia is not a major confound in studying the cell-type specificity of ultrasound neuromodulation. We further determine that, in an awake, head-fixed setting, the preferred PRF and DC for inducing time-locked excitation with our pulsed tFUS paradigm are 1500 Hz and 60%, respectively.