We show that the mode strengths of a guided field in an arbitrary asymmetric channel waveguide can be uniquely determined from self-referencing interferometric measurements at the exit plane of the waveguide. This requires knowledge of both the amplitude and phase of the complex electric field distribution. Although the amplitude can be obtained from the measured intensity profile easily, the phase retrieval is usually non-trivial. We develop an innovative, alternative and promising technique, where the complex cross-spectral density (CSD) function is measured using a customized wavefront folding interferometer. We then construct the total electric field (complex valued), from which we can determine the strengths of the allowed modes for an asymmetric strip waveguide. Our retrieval algorithm also provides the phase information (intermodal dispersion) associated with each mode, directly from the measured electric field distribution. Moreover, we experimentally demonstrate the developed scheme for different in-coupling (butt-coupling) conditions, resulting in different modal strength distributions.