Oxidative stress plays a very significant role in the pathophysiology of sickle cell disease (SCD) and associated complications. Oxidative stress, which is often experienced by SCD patients as a result of continuous production of reactive oxygen species (ROS), may lead to endothelial dysfunction and acute inflammation. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), often play a protective role. The current study aimed at determining the oxidative profile of persons with SCD at a tertiary hospital in Ghana. This was a case-control study involving 90 patients with SCD (34 HbSS patients at steady state, 30 HbSC at steady state, 15 HbSS with vaso-occlusive crisis, 11 HbSC with vaso-occlusive crisis), and 50 HbAA control group. Whole blood samples were collected from the study participants and analyzed for full blood counts. The blood samples were assayed for SOD and CAT as a measure of antioxidant defense, while lipid peroxidation was quantified as malondialdehyde (MDA). The results showed that the levels of SOD and CAT were significantly lower in SCD patients as compared to the control group. Patients with HbSS vaso-occlusive crisis had the lowest levels of SOD and CAT. The difference in SOD levels between HbSS at steady state and HbSC with vaso-occlusive crisis was, however, not significant (p = 0.228). The MDA level was significantly higher in SCD patients compared to the control group. This study concludes that the levels of various antioxidant enzymes (erythrocyte SOD and erythrocyte CAT) and oxidative marker (MDA) and are altered in SCD patients.