Działanie urządzeń termoakustycznych (TA) opiera się na efekcie termoakustycznym opisanym przez Rayleigha już w XIX w. Przy odpowiednio wysokiej różnicy temperatur wzdłuż tuby akustycznej gaz zaczyna samoistnie oscylować, generując dźwięk. Praca urządzeń TA wykorzystujących falę biegnącą jest oparta na termodynamicznym obiegu Stirlinga. Silnik termoakustyczny w swojej konstrukcji przypomina klasyczny silnik Stirlinga -wykorzystuje pracę nagrzewnicy, chłodni-cy i umieszczonego między nimi regeneratora. Energia mechaniczna otrzymana przez naprzemienne sprężanie i rozprężanie cząstek gazu przyjmuje postać energii niesionej przez falę dźwiękową, która w tym wypadku zastępuje pracę tłoka. W urządzeniach TA następuje zatem konwersja energii cieplnej w akustyczną (silniki) lub energii akustycznej w cieplną (pompy ciepła). Urządzenia TA charakteryzują się prostą budową i nie posiadają części ruchomych. Artykuł przedstawia podstawową zasadę działania urządzeń termoakustycznych oraz towarzyszących temu procesów konwersji energii. Analizie poddano proces rozpraszania energii na regeneratorze urządzenia termoakustycznego oraz jego obieg termodynamiczny przy uwzględnieniu oscylacyjnego ruchu gazu. Zaprezentowano, w jaki sposób cząstka gazu przechodzi obieg termodynamiczny i jak kontakt termiczny cząstki i ścianki regeneratora wpływa na ten proces. Omówiono również warunki potrzebne do wystąpienia efektu termoakustycznego dla przesunięcia fazowego między ciśnieniem akustycznym a prędkością akustyczną, odpowiadającego fali stojącej oraz fali biegnącej. Przedstawiono także bilans energii przykładowego urządzenia oraz możliwości jego zastosowania.Słowa kluczowe: termoakustyka, obieg termodynamiczny, obieg Stirlinga, energia fali akustycznej
WstępEnergia akustyczna może zostać zamieniona w energię mechaniczną, energię elektryczną oraz energię cieplną, a także odwrotnie -każdą z tych energii można przetworzyć w energię akustyczną. Silnik termoakustyczny jest urządze-niem, które bezpośrednio realizuje konwersję ciepła w moc akustyczną fali 1 Autor do korespondencji/corresponding author: Adam Ruziewicz, Politechnika Wrocławska,