2022
DOI: 10.3390/jlpea12020029
|View full text |Cite
|
Sign up to set email alerts
|

Low-Overhead Reinforcement Learning-Based Power Management Using 2QoSM

Abstract: With the computational systems of even embedded devices becoming ever more powerful, there is a need for more effective and pro-active methods of dynamic power management. The work presented in this paper demonstrates the effectiveness of a reinforcement-learning based dynamic power manager placed in a software framework. This combination of Q-learning for determining policy and the software abstractions provide many of the benefits of co-design, namely, good performance, responsiveness and application guidanc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 62 publications
0
0
0
Order By: Relevance