The reduction of water resources due to climate change and the increasing demand associated with population growth is a renewed concern. Water distribution monitoring and smart metering are essential tools to improve distribution efficiency. This paper reports on the study, design, and implementation of a smart water meter (SWM) prototype, designed for mechanical water meters that need to undergo a retrofitting process to enable automatic metering readings. Metering data is transmitted through innovative narrowband internet of things (NB-IoT) technology with low power, long-range, and effective penetration. A flexible power management design allows the introduction of an energy harvester that recovers energy from the surrounding environment and charges the internal battery. The energy harvesting feasibility was demonstrated with two proof-of-concept configurations, light and water-turbine based. The details on the performance of the proposed solution are presented, including the output voltages and harvested power. Although the energy harvesting technologies have not been integrated yet in commercial SWM applications, the results show that the integration is feasible and, once employed in a controlled environment, it can create business advantages by reducing the size and capacity of the internal batteries, enabling one to reduce the operation cost and mitigate long-term ecological problems associated with the use and disposal of batteries.