2016
DOI: 10.2172/1332329
|View full text |Cite
|
Sign up to set email alerts
|

Low-Probability High-Consequence (LPHC) Failure Events in Geologic Carbon Sequestration Pipelines and Wells: Framework for LPHC Risk Assessment Incorporating Spatial Variability of Risk

Abstract: If Carbon dioxide Capture and Storage (CCS) is to be effective in mitigating climate change, it will need to be carried out on a very large scale. This will involve many thousands of miles of dedicated high-pressure pipelines in order to transport many millions of tonnes of CO 2 annually, with the CO 2 delivered to many thousands of wells that will inject the CO 2 underground. The new CCS infrastructure could rival in size the current U.S. upstream natural gas pipeline and well infrastructure. This new infrast… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 31 publications
0
1
0
Order By: Relevance
“…When assessing societal risks, the issue of high consequence events (large number of fatalities) having extremely low, but existent, occurrence probabilities, arises. These risks are difficult to quantify, and are often the most worrisome as well (Oldenburg and Budnitz 2016). Although some methods have been used to analyse these risks (Oldenburg and Budnitz 2016) and to quantify them (Cadini et al 2017;Mignan et al 2014), tolerable thresholds are difficult to define for systems where large populations are exposed (densely populated developments where hundreds to thousands of people can potentially be affectedsuch as communities downstream of dam facilities).…”
Section: The Issue Of Low Probability -High Consequence Eventsmentioning
confidence: 99%
“…When assessing societal risks, the issue of high consequence events (large number of fatalities) having extremely low, but existent, occurrence probabilities, arises. These risks are difficult to quantify, and are often the most worrisome as well (Oldenburg and Budnitz 2016). Although some methods have been used to analyse these risks (Oldenburg and Budnitz 2016) and to quantify them (Cadini et al 2017;Mignan et al 2014), tolerable thresholds are difficult to define for systems where large populations are exposed (densely populated developments where hundreds to thousands of people can potentially be affectedsuch as communities downstream of dam facilities).…”
Section: The Issue Of Low Probability -High Consequence Eventsmentioning
confidence: 99%