Tokamak plasmas often exhibit self-organizing behavior in which internal modes shape the toroidal current density profile, a common example being the sawtooth instability. However, such behavior has not been studied in detail for edge safety factor below 2 due to disruptive kink instabilities that typically prevent operation in this regime. Now, steady tokamak plasmas with an edge safety factor down to 0.8 have been created in the Madison Symmetric Torus, where disruptions are prevented due to a thick, conductive wall and a feedback power supply that sustains the plasma current. Internal measurements and nonlinear magnetohydrodynamic modeling reveal a family of safety factor profiles with a central value clamped near unity as the edge safety factor decreases, indicating current profile broadening through a relaxation process. As the safety factor decreases, the magnetic fluctuations become irregular, and the electron energy confinement time decreases.