2021
DOI: 10.1049/ipr2.12281
|View full text |Cite
|
Sign up to set email alerts
|

Low‐rank nonnegative sparse representation and local preservation‐based matrix regression for supervised image feature selection

Abstract: Matrix regression has attracted much attention due to directly select some meaningful features from matrix data. However, most existing matrix regressions do not consider the global and local structure of the matrix data simultaneously. To this end, we propose a lowrank nonnegative sparse representation and local preserving matrix regression (LNSRLP-MR) model for image feature selection. Here, the loss function is defined by the left and right regression matrices. To capture the global structure and discrimina… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 42 publications
0
1
0
Order By: Relevance
“…On the other hand, since Tr((boldA(k))TboldXiboldB(k))=Tr((boldW(k))TboldXi)$Tr({({{\bf{A}}^{(k)}})^T}{{\bf{X}}_i}{{\bf{B}}^{(k)}}) = Tr({({{\bf{W}}^{(k)}})^T}{{\bf{X}}_i})$ with Wfalse(kfalse)=Afalse(kfalse)false(Bfalse(kfalse)false)TRm×n${{\bf{W}}^{(k)}} = {{\bf{A}}^{(k)}}{({{\bf{B}}^{(k)}})^T} \in {R^{m \times n}}$, the first and fifth terms in ANLRP‐SMR model can degenerate into matrix regression, and replace low‐rank representation with sparse representation, then it can be regarded as the LNSRLP‐MR model in [61]: leftmink=1ci=1N()Tr((boldW(k))TboldXi)+gkyki2left+α‖‖W2,1+βi=1N‖‖boldsi1left+λi=1N‖‖boldEi+γ2i=1Nj=1…”
Section: Experimental Results and Analysismentioning
confidence: 99%
“…On the other hand, since Tr((boldA(k))TboldXiboldB(k))=Tr((boldW(k))TboldXi)$Tr({({{\bf{A}}^{(k)}})^T}{{\bf{X}}_i}{{\bf{B}}^{(k)}}) = Tr({({{\bf{W}}^{(k)}})^T}{{\bf{X}}_i})$ with Wfalse(kfalse)=Afalse(kfalse)false(Bfalse(kfalse)false)TRm×n${{\bf{W}}^{(k)}} = {{\bf{A}}^{(k)}}{({{\bf{B}}^{(k)}})^T} \in {R^{m \times n}}$, the first and fifth terms in ANLRP‐SMR model can degenerate into matrix regression, and replace low‐rank representation with sparse representation, then it can be regarded as the LNSRLP‐MR model in [61]: leftmink=1ci=1N()Tr((boldW(k))TboldXi)+gkyki2left+α‖‖W2,1+βi=1N‖‖boldsi1left+λi=1N‖‖boldEi+γ2i=1Nj=1…”
Section: Experimental Results and Analysismentioning
confidence: 99%