2022
DOI: 10.48550/arxiv.2203.06645
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Low rank orthogonal bundles and quadric fibrations

Abstract: Let C be a curve and V → C an orthogonal vector bundle of rank r. For r ≤ 6, the structure of V can be described using tensor, symmetric and exterior products of bundles of lower rank, essentially due to the existence of exceptional isomorphisms between Spin(r, C) and other groups for these r. We analyze these structures in detail, and in particular use them to describe moduli spaces of orthogonal bundles. Furthermore, the locus of isotropic vectors in V defines a quadric subfibration QV ⊂ PV . Using familiar … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?