2022
DOI: 10.1155/2022/8194834
|View full text |Cite
|
Sign up to set email alerts
|

Low-Rank Tensor Patching Based on Convolutional Sparse Coding for Communication Data Repair

Abstract: The study aimed to solve the common problem that hardware limitations and degradation make the data obtained in reality usually incomplete and improve the quality of communication transmission. In this paper, we propose a new low-rank tensor complementation model LRTC-CSC, which is based on tensor kernel parametrization (TNN), preserves the low-rank structure of information while restoring the detail features, and finally solves the problem using the efficient alternating direction multiplier method (ADMM). Ba… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?