2023
DOI: 10.17485/ijst/v16i4.2371
|View full text |Cite
|
Sign up to set email alerts
|

Low Resource Kannada Speech Recognition using Lattice Rescoring and Speech Synthesis

Abstract: Objectives: Improving the accuracy of low resource speech recognition in a model trained on only 4 hours of transcribed continuous speech in Kannada language, using data augmentation. Methods: Baseline language model is augmented with unigram counts of words, that are present in the Wikipedia text corpus but absent in the baseline, for initial decoding. Lattice rescoring is then applied using the language model augmented with Wikipedia text. Speech synthesis-based augmentation with multi-speaker syllable-based… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 66 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?