The dielectric barrier discharge (DBD) plasma actuator offers promising opportunities for flow control because it does not require mass injection and involves no moving mechanical components. In order to gain better understanding of the impact of the materials and operational parameters on the performance of the DBD actuator, and to facilitate design of effective control schemes, the surrogate modeling technique is adopted. The model is established based on three design variables, namely (i) frequency of the applied voltage, (ii) dielectric constant of the insulator, and (iii) polarity (positive/negative) time ratio of the applied waveform, and focuses on two objectives, namely, (i) net force generated, and (ii) power requirement. The 2-species fluid plasma model with helium as a working gas is used in the computational model to generate the data needed by the surrogate model. Multiple surrogate models are compared to enhance the robustness of the surrogate performance. There exist multiple Pareto fronts where the x-directional force is positive with relatively low power and negative with high power respectively. Global sensitivity analysis indicates that the frequency of the applied voltage is important for the actuator performance in one region whereas the time ratio of the applied waveform is in the other, while the dielectric constant is always important. The performance dependency on variables also differs significantly according to the different regions.