The ultrasonic properties like ultrasonic attenuation, sound velocity in the hexagonal alloys have been studied along unique axis at room temperature. The second- and third-order elastic constants (SOEC & TOEC) have been calculated for these alloys using Lennard-Jones potential. The velocities and have minima and maxima, respectively, at 45° with unique axis of the crystal, while increases with the angle from unique axis. The inconsistent behaviour of angle-dependent velocities is associated to the action of second-order elastic constants. Debye average sound velocities of these alloys are increasing with the angle and has maximum at 55° with unique axis at room temperature. Hence, when a sound wave travels at 55° with unique axis of these alloys, then the average sound velocity is found to be maximum. The mechanical and ultrasonic properties of these alloys will be better than pure Zr and Sn due to their high SOEC and ultrasonic velocity and low ultrasonic attenuation. The comparison of calculated ultrasonic parameters with available theoretical/experimental physical parameters gives information about classification of these alloys.