2017
DOI: 10.1016/j.apcatb.2017.05.089
|View full text |Cite
|
Sign up to set email alerts
|

Low-temperature methanol dehydration to dimethyl ether over various small-pore zeolites

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

2
52
1
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 79 publications
(56 citation statements)
references
References 23 publications
2
52
1
1
Order By: Relevance
“…This peculiar temperature dependence of the formation of methanol and DME is different from that observed with pure copper‐based catalysts, and it is attributed to the influence of the adsorbing support on the multistep reaction mechanism: DME is produced by a condensation reaction of methanol on the acid sites of the zeolite …”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…This peculiar temperature dependence of the formation of methanol and DME is different from that observed with pure copper‐based catalysts, and it is attributed to the influence of the adsorbing support on the multistep reaction mechanism: DME is produced by a condensation reaction of methanol on the acid sites of the zeolite …”
Section: Resultsmentioning
confidence: 99%
“…This provides an additional possibility to optimize the performance of a sorption catalyst that is complementary to the optimization of the metal (Cu) particles: because pore sizes may influence the product distribution, the formation of methanol and/or DME might be facilitated in a more selective fashion. The Brønsted acid centers in the zeolite, which are responsible for the condensation reaction of DME, can be modified, thereby enhancing or suppressing the formation of DME. However, both methanol and DME have the advantages of being a renewable energy carrier in the future.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Syngas-to-methanol reaction is performed over copper-based catalysts (mainly, CuÀ ZnOÀ Al 2 O 3 ) in the first step, which is thermodynamic equilibrium limitation at high reaction temperature. [4][5][6] Methanol-to-DME reaction is carried out over solid acid catalysts such as acidic zeolites (HZSM-5, HZSM-22, HY, and H-SAPO), [7][8][9][10][11][12] γ-alumina, [13][14][15] heteropolyacid, [16,17] and mixed metal oxides [18][19][20] in the second step. However, methanol, as a relatively high-cost chemical, increases the cost for producing DME, besides the two-step DME synthesis is limited by the availability of methanol.…”
mentioning
confidence: 99%
“…随着全球石油资源日益短缺和温室效应的恶化, 柴油机因其热效率高和使用寿命长而被广泛应用于 交通运输行业 [1][2] 。全球机动车已开始呈现使用"柴 油"的趋势,但是柴油机的氮氧化物(NO x )排放会引 起一系列严重的环境问题, 比如: 光化学烟雾和酸 雨等。因此, 如何从柴油中除去 NO x 是环境催化领 域的主要挑战之一。目前, 使用氨气作为还原剂的 选择性催化还原(NH 3 -SCR)是一种最有效的 NO x 净 化手段 [3][4][5] 。基于这项技术, 研究人员一直在努力探 索适当的脱硝催化剂, 其中 V 2 O 5 -WO 3 /TiO 2 和不同 类型的沸石是最具代表性的催化材料 [6][7][8] 。 SSZ-13 是由 AlO 4 和 SiO 4 共用顶点的氧原子首 尾连接而构成的一种分子筛, 其孔道尺寸为 0.38 nm× 0.38 nm, 比表面积可达 700 m 2 /g [9][10] 。较高的比表面 积、良好的水热稳定性、更多的表面酸质子中心和 阳离子交换性能使得 SSZ-13 在柴油机废气净化 [11] 、 甲醇制烯烃 [12] 和 CO 2 吸附分离 [13] 等应用中表现出 优异的性能。然而, SSZ-13 在 NH 3 -SCR 中的工作温 度较低, 其活性在高温下较差 [14] 。此外, 车辆对催 化剂的热稳定性要求很高, 单独的分子筛在经热冲 击后骨架容易坍塌 [15] 。而复合材料可以结合两种材 料的优点, 既有利于提高整体催化剂的催化活性, 又能提高其热稳定性。 碳化硅(SiC)具有高强度、耐高温、耐腐蚀、良 好的导热性和耐热冲击性 [16] 等, 是化学反应催化剂 载体中最理想的候选材料之一, 如: 醇的氧化 [17] 、 CH 4 的氧化偶联 [18] 、 H 2 S 的部分氧化 [19] 等。 然而, 由 于其比表面积有限和惰性表面, SiC 不能很好地分 散催化剂, 从而导致活性低, 这在很大程度上限制 了其应用。因此, 提高 SiC 的比表面积、增加其表 面化学活性位点的数量, 对于 SiC 在工业应用中的 推广具有积极意义。 在太阳能电池硅片切割工艺中, SiC 作为切割 硅片的磨料, 切割完成后会形成含有大量 SiC 和少 量金属等杂质的混合废料(HT-SiC)。在工业上, 纯 SiC 的市场价格为 ¥10 6 /kg 或更高, 许多公司正在 尝试从硅片切割废料中回收 SiC, 但是回收率通常 低于 30%, 而且成本很高。目前, HT-SiC 不能正常 使用, 会造成严重的环境污染。在本课题组前期工 作中 [20] , 将 Cu-SSZ-13 分子筛生长在 SiC 块体上, 并在 NH 3 -SCR 活性测试中大幅提高了 Cu-SSZ-13 的中高温区催化活性。在本工作中, Cu-SSZ-13 将和 HT-SiC 复合在一起得到一种新型脱硝催化剂。 同时, 在 HT-SiC 中存在的少量 Fe 组分杂质还可以作为 NH 3 -SCR 的活性位点 [21][22]…”
unclassified