This Technical Review presents the state-of-the-art in low-temperature chemical solution deposition (CSD) processing of ferroelectric oxide thin films. To achieve the integration of multifunctional crystalline oxides with flexible and semiconductor devices is today crucial to meet the demands of coming electronic devices. Hence, amorphous metal oxide semiconductors have been recently introduced in thin film electronics. However, their benefits are limited compared to those of ferroelectric oxides, which intrinsic multifunctionality would make possible multiple operations in the device. But, ferroelectricity is linked to a non centrosymmetric crystal structure that is achieved, in general, at high temperatures, over 500C. These temperatures exceed the thermal stability of flexible polymer substrates and are not compatible with those permitted in the current fabrication routines of Si-based devices. In addition, the manufacturing of flexible electronic devices not only calls for low-temperature fabrication processes but also for deposition techniques that scale easily to the large areas required in flexible devices. In this regard, CSD processes are the best positioned today to integrate metal oxide thin-films with flexible substrates, as a large-area, low-cost, high-throughput fabrication technique. Here, we review the progress made in the last years in fabricating at low temperature crystalline ferroelectric oxide thin films via CSD methods, highlighting the recent work of our group in the preparation of ferroelectric oxide thin films on flexible polyimide substrates.