We present a large class of three-dimensional spin models that possess topological order with stability against local perturbations, but are beyond description of topological quantum field theory. Conventional topological spin liquids, on a formal level, may be viewed as condensation of stringlike extended objects with discrete gauge symmetries, being at fixed points with continuous scale symmetries. In contrast, ground states of fractal spin liquids are condensation of highly fluctuating fractal objects with certain algebraic symmetries, corresponding to limit cycles under real-space renormalization group transformations which naturally arise from discrete scale symmetries of underlying fractal geometries. A particular class of three-dimensional models proposed in this paper may potentially saturate quantum information storage capacity for local spin systems.